A Padé-type approach to non-classical orthogonal polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

non-corrective approach to pronunciation

the aim of this study has been to find answers for the following questions: 1. what is the effect of immediate correction on students pronunciation errors? 2. what would be the effect of teaching the more rgular patterns of english pronunciation? 3. is there any significant difference between the two methods of dealing with pronuciation errore, i. e., correction and the teaching of the regular ...

15 صفحه اول

Q-classical Orthogonal Polynomials: a General Difference Calculus Approach

It is well known that the classical families of orthogonal polynomials are characterized as the polynomial eigenfunctions of a second order homogenous linear differential/difference hypergeometric operator with polynomial coefficients. In this paper we present a study of the classical orthogonal polynomials sequences, in short classical OPS, in a more general framework by using the differential...

متن کامل

Classical Orthogonal Polynomials: a General Difference Calculus Approach

It is well known that the classical families of orthogonal polynomials are characterized as eigenfunctions of a second order linear differential/difference operator with polynomial coefficients. In this paper we present a study of classical orthogonal polynomials in a more general framework by using the differential (or difference) calculus and Operator Theory. In such a way we obtain a unified...

متن کامل

Q-Hermite Polynomials and Classical Orthogonal Polynomials

We use generating functions to express orthogonality relations in the form of q-beta integrals. The integrand of such a q-beta integral is then used as a weight function for a new set of orthogonal or biorthogonal functions. This method is applied to the continuous q-Hermite polynomials, the Al-Salam-Carlitz polynomials, and the polynomials of Szegő and leads naturally to the Al-Salam-Chihara p...

متن کامل

Classical Orthogonal Polynomials as Moments

We show that the Meixner, Pollaczek, Meixner-Pollaczek and Al-Salam-Chihara polynomials, in certain normalization, are moments of probability measures. We use this fact to derive bilinear and multilinear generating functions for some of these polynomials. We also comment on the corresponding formulas for the Charlier, Hermite and Laguerre polynomials. Running Title: Generating Functions

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1985

ISSN: 0022-247X

DOI: 10.1016/0022-247x(85)90146-5